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Abstract

The internal electric field of an illuminated liquid droplet

is studied in detail using both wave theory and ray theory. The

internal field attains its maximum values on the caustics within

the droplet. Ray theory is used to determine the equations of

these caustics and the density of rays on them. The Debye series

expansion of the interior field Mie amplitudes is used to calculate

the wave theory version of these caustics. The physical

interpretation of the sources of stimulated Raman scattering and

fluorescence emission within a liquid droplet is then given.

Introduction

When a spherical liquid droplet is illuminated by a light

source, the light is partially focused inside the droplet, forming

patterns of caustic lines. The purpose of this paper is to analyze

these patterns using a reformulation of Mie theory. One limitation

of Mie theory is that it often gives little physical insight as to

the origins of various scattering effects. As an alternative, ray

theory often provides physical insight into the scattering process.

However, ray calculations are incomplete and do not take into

account wavelike phenomena such as diffraction and interference.

The gap between Mie theory and ray theory can be bridged with the

use of the Debye series expansion. The Debye series rearranges the

Mie equations into an infinite series of internal reflection and

transmission terms. Since the Debye series is mathematically

equivalent to the Mie equations, it is exact and accounts for all

the mechanisms that produce scattering. Its usefulness comes from

calculating the individual terms of the series because they are

analogous to reflected and transmitted light rays. These terms of

the Debye series provide the physical insight into the origin of

the caustic patterns inside the spherical droplet.

This paper represents the first time to our knowledge that the

Debye series has been used to study in detail the interior

scattering pattern of illuminated liquid droplets. This paper

also makes use of the full Mie theory, as well as ray theory to

analyze the internal caustic structure of a liquid droplet. The



results of stimulated Raman scattering (SRS) and fluorescence
emission experiments are investigated as well, and the physical
mechanisms that produce the sources of SRS and fluorescence in the
droplet are determined using the above analytical methods.

Ray Theory of the Caustics within a Liquid Droplet

In this section we consider a spherical droplet of radius a

and refractive index n whose center is at the origin of the

coordinate system and which is illuminated by a family of rays

propagating parallel to the positive Z axis. This geometry is

shown in Fig. i. Consider a ray whose angle of incidence at the

droplet is 8 i. The fraction of this ray's intensity that is

transmitted into the droplet is T(0i) and the fraction that is

reflected at the surface is R(0i). For a>>A, the droplet surface

is approximately flat, thus T(@i) and R(0i) are given by the Fresnel

coefficients. I For the ray that is transmitted into the droplet,

the fraction of its intensity that is internally reflected at each

subsequent interaction with the droplet surface is also R(0i).

We define the p-ray family to be those rays within the droplet

for all 0i that have made p - 1 internal reflections. For example,

when the incident rays are transmitted into the droplet, they

become the p = 1 rays, after their first reflection inside the

droplet they become the p = 2 rays, etc. Figure 2 shows several

families of rays (line drawings) for p-values ranging from one to

eight. The value for the index of refraction is taken as

n = 1.36 + 0i (i.e. an ethanol droplet) and the incident light is

traveling from left to right in the figure. The line drawings of

Fig. 2 show many different caustics. These drawings are two

dimensional sections of the spherical droplet. The full ray

picture is given by a figure of revolution about the Z axis for

each drawing. Thus, the points where the p = 1 caustic intersects

the droplet surface (on the shadow side) is a caustic ring when the

figure is rotated. A photograph of the p = 1 caustic ring on an

18.4 cm diameter thin-wall spherical glass globe filled with water

is shown as Fig. 3a. The p = 2 caustic in Fig. 2 is a cusp of

revolution whose focal point is on the Z axis at r = 0.61a when

n = 1.36. A photograph of the p = 2 cusp of revolution for the

thin-wall water-filled glass globe is shown as Fig. 3b. For each

higher value of p, the caustic is also a cusp of revolution that

winds further and further around the sphere, intersecting itself on
the axis a number of times. These caustics will be referred to as

the cusp caustics of the droplet.

Employing the definition of a caustic as the envelope of the

p-ray family, 2 we find in Appendix A that the coordinates of the p-

ray cusp caustic are

z = (-sin(y) sin(8 r) + K cos(y) cos(O_))a

0 = (-cos(y) sin(Oz) - K sin(y) cos(8_))a

(i)

where from Fig. i, # is the distance perpendicular to the Z axis,

8r is the angle of refraction of the ray whose angle of incidence

is 0i,
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nsin(8 r) = sin(8 i) (2)

y = 8i+p1_- (2p-l) ez (3)

and

cos (e_)]-i
K = 2p-i -n . (4)

cos (ei)

The cusp points of the caustics of Fig. 2 have the coordinates

(-1)p
= a

Zc 2p-l-n (5)

pc = 0

and near a cusp point, the cusp takes the usual Pearcey form 3

Z Z c _ W (6)

a

where

W-(-I)P _9 [(2p-I-n) 3 - (2p-I-n) + n(n2-1) ] }_'2_p_-l-_) _ (7)

Since the caustics of Fig. 2 and eq. (I) correspond to p-rays
transmitted into and reflecting within a single cross section of

the sphere, the equations of the analogous ray theory caustics for

a circular cylinder illuminated by normally incident rays are
identical.

In addition to the cusp caustic, a second type of caustic that

is not readily apparent in Fig. 2, also exists within the droplet.
It is the axial caustic. This caustic corresponds to focusing on

the Z axis of light rays that enter the sphere along a ring of

constant 8i. Thus for any p-family of rays, an axial caustic will

be present if the p-rays cross the Z axis. For the droplet
depicted in Fig. 2, it can be seen that p-values of two and larger

have the required internal axis crossing which forms the axial

caustic. Also note in Fig 2 that the axial caustic never extends

across the full length of the droplet's axis since rays never cross

the Z axis near the center of the droplet.

The coordinates of the p-ray axial caustic within the sphere

sin(8 r)
z=-a

sin(y) (8)

p = 0,

are calculated in Appendix A. A photograph of the internal p = 2
axial caustic for the thin-wall water-filled glass globe is shown

as Fig. 3c. For 8i = 0, the p-ray axial caustic begins at the cusp

point of eq. (5). For increasing 9i it proceeds along the axis

inside the cusp of revolution toward the surface. For large p, it

continues back and forth along the droplet axis with turning points

at the locations where the cusp caustic intersects itself. This

behavior is shown in Fig. 4 for the p = 5 axial caustic. In the



figure, the incident rays are labeled with the letters A-P, and the

crossing point of each ray on the axis is labeled with the same

letter. The exiting rays are denoted by the prime and are shown so

that the direction of travel of the ray can be seen. Note in the

figure that there are regions where the axis crossings by the p-

rays are more dense: points A to D and K to N. It is within the

second of these regions that the turning point (L) of the axial

caustic occurs. Also note that some of the p = 5 rays do not cross

the axis. These are rays that enter the droplet at angles greater

than the entering angle of ray H and less than the entering angle

of ray I; and also for rays that enter at angles greater than the

entering angle of ray P.

One important difference between the axial caustics and the

cusp caustics is the degree of focusing that each represent. For

the cusp caustics, incident rays that enter the droplet over a

small element the droplet's surface area contribute to the caustic

over a small element of the caustic's surface area. For the axial

caustics, incident rays entering the droplet over an element of the

droplet's surface area (in this case it is in the shape of an

annular ring) contribute to the axial caustic over an element of

the axial caustic's one-dimensional length. This mapping

(surface _ line) for the axial caustic corresponds to a higher

degree of focusing than does the mapping (surface _ surface) for

the cusp caustics of revolution. As a result, the axial caustics

are expected to be the largest contributor to the intensity on the

droplet axis. The turning points of the axial caustics represent

an even higher degree of focusing since at these points, incident

rays entering the droplet over an annular ring are focused at the

turning point rather than along a line. The method of Ref. 4 is

employed in Appendix B to calculate the density of rays on the

axial caustics. We find that the ray theory intensity of the p-ray

axial caustics is given by

dFp _ 2_a2nKT(@i)RP-1(Si)sin(Si)cos(Sr)sin2(y ) (9)

dz cos (y) sin (8_) + K sin (y) cos (Or)

where K is given in eq. (4), and for unpolarized light T(#i) and

R(#i) are given by the averages of eqs. (18-38,39) of Ref. 1

respectively.

Wave Theory of the Caustics within a Liquid Droplet

For a plane wave of wavelength k incident on a spherical

droplet, the components of the interior electric and magnetic

fields in Mie theory are given in Refs. 5-6,51-52. They are

written as an infinite series of partial wave contributions which

contain the Mie interior partial wave amplitudes 7 c e and d t. Each

of the partial wave amplitudes in turn may be written as another

infinite series corresponding to interactions with the droplet

surface of the radially propagating spherical multipole partial

waves. This series expansion of c t and d t is analogous to the
situation for a flat thin film where the transmitted and reflected

electric fields are decomposed into a series of terms corresponding

to multiple internal reflections. 8 This series expansion for c t and

4



dt is known as the Debye series, and it provides the link between
wave theory and the ray theory results for the p-ray families of
Fig. 2. 9°I° The Debye series has been used for far-field scattering
to isolate one component of the far-field intensity from
interference effects produced between it and all the other
components, and to suggest physical mechanisms for various
scattering phenomena, n2° It also provides a theoretical
justification for the physical optics model for light scattering
from bubbles. 2.-_

Using the notation of Ref. ii, the Debye series expansions of

the Mie theory partial wave amplitudes a t and b t for the scattered

fields are

and the Debye series expansions of the Mie theory partial wave

amplitudes c t and d e for the interior fields are

- _ _ (R__)_-_
i -R_ I p=1

(ii)

In these expansions, region 1 is the interior of the sphere,

region 2 is outside the sphere, Tt21 is the amplitude transmission

coefficient for the _ spherical multipole partial wave to be

transmitted from region 2 into region i, Rtu is the amplitude

transmission coefficient for the _ partial wave to be internally

reflected from region 1 back into the same region,

_i = -2i/x2 , (12)

and

R,_,: - ct,_-t;) - i ( t; ÷t_)

For a t and ct, the t t' are given by

t_ = xy[j_(x)j__l(y)- nj__l(x)j,(y) + _(n_-l)y jl(x)j_(y)]

and for be and de, the tt' are given by

(13)

(14)

5



t_ = Xy [nil(x) J,-I (Y) - J,-1(x) j!(y)]

t_ = xy [nn,(x) n,_ 1(y) - n,_1(x) n I(y) ]

t_ = xy [nni(x) SI-I (Y) - n(-1(x) JI(Y) ]

t_ = xy[nj,(x) n(_, (y) - Ji]a (X) n,(y)]

where

2ia
X -

I '

(15)

(16)

y = nx, (17)

and where Jt and n e are spherical Bessel functions and spherical

Neumann functions respectively. (These are also known as spherical

Bessel functions of the first and second kind,) In additi6n, the

amplitude transmission and reflection coefficients satisfy

IN  l : IRaqi, (18)

T112 -

and

l ,ll'
n

l

n
(19)

The physical interpretation of the various terms in eq. (i0) are

given in Ref. ii. For the interior of the droplet, the p term in

eq. (ii) corresponds to spherical multipole partial waves that have

entered the droplet and have made p - 1 internal reflections. The

Mie theory equivalent of the p-ray family of the previous section

is the evaluation of the internal fields employing the p term in

eq. (ii) for c I and d t.

Over the years, one concern in numerical Mie theory

computations has been the determination of thepartial wave _m_ at

which the Mie series is truncated. For far-field scattering,

Dave's criterion _5 is that the Mie scattering amplitudes a t and b t

satisfy lat_xl 2 + Ibem_l 2 _ 10 44 . Occasional numerical difficulties

with this criterion and the need for faster Mie calculation

algorithms led Wiscombe to improve the criterion 26 to

£max = x + 4.05 x I/3 + 2, which insures that arm _ and btm _ are each of

order i0 -s. For internal source function calculations, previous

authors have used either the first 27-2g or second 2_3° criterion.

However, each of these criteria leads to less precision for

interior field calculations than for far-field scattering

calculations. This can be seen from the Debye series as follows.

For high partial waves (i.e., £ > x) we have Tt21 _ 0 and Rtn _ I.

Assume that for such a partial wave

<< i (21)

+ IRaqi 2 = m. (20)



Then substituting eq. (21) into eq. (20) and Taylor series

expanding, we get

B 2
- I--- (22)

2n

From eq. (II) the interior Mie amplitudes are of order

c_ - d, - 8, (23)

while from eq. (I0) the scattering Mie amplitudes are of order

a_ - b_ - E2. (24)

As a result, the Mie interior amplitudes which are calculated with

c t and d t converge slower than the Mie scattering amplitudes which

are calculated with a t and b t. To obtain the same precision for

interior field computations that one demands for far-field

scattering computations, more terms than indicated by Dave's or

Wiscombe's criteria must be employed in the Mie series. A related

situation occurs when searching for morphological scattering

resonances in the far-field scattering amplitudes, n'3* Using the

formalism of Ref. 32, we find that the series cutoff

1

(25)
_ax = X + 7 X +2

ensures that Cem_ and dt_ are of the order 10 .8 for 35 S x S i0,000

and for Im(n) _ 0.i.

The cutoff of eq. (25) was used with the internal field

formulas of Ref. 5-6 to determine the source function of a sphere

S(Z) : E*<f)'E(f) (26)

E0

where E 0 is the incident field strength, for size parameter

x = I00.0 (27)

and real refractive index

n = 1.36 (28)

spherical Besselilluminated by unpolarized plane waves. The

functions that occur in the radial dependence of the electric field

and in the evaluation of c e and d t were computed by downward

recursion. The spherical Neumann functions were computed by upward
recursion.

The full Mie interior source function is shown in Fig. 5 in

three different formats. Figure 5a is a i00 x i00 point carpet

plot and shows the strong interior field enhancements on the

sphere's axis at r = ± 0.8a. These enhancements in the source

function are compatible with the locations of the enhancements

found in previous Mie theory calculations 17'33-39and will be addressed

in the next section. Figure 5b is the same source function

calculated on a 500 x 500 point grid and logarithmically mapped

into 64 shades of gray: black indicating the most intense fields

and white the least intense. This gray level plot emphasizes the

interference structure of the interior source function. Figure 5c



shows the source function on the sphere axis. The enhancements at
r _ ± 0.8a appear to be a number of closely spaced individual
enhancements.

The contribution to the source function provided by the
individual p = 1 to 8 terms of the Debye series of eq. (ii) were
also calculated for unpolarized incident light and are shown as the
gray level plots in Fig. 2 along with the ray theory predictions.
A common rule of thumb has been that ray theory becomes a good
approximation to the far-field primary rainbow caustic for
x _ 2000. 4o Furthermore, when rainbows of higher order are

observed, larger values of x are required before these rainbows are

well formed. _5 For the interior caustic structure of Fig. 2, ray

theory is already a qualitatively good approximation to wave theory

at x = i00 for all values of p up to at least 8.

Fig. 2 sh0ws a number of o£her in£eresting features. As with

all other wave theory optical caustics, 41 the infinite intensity of

ray theory caustics is rendered finite and is surrounded by

diffraction and interference structure. For p = 2, the interior

portion of the first order rainbow is visible in both the ray

picture and the Debye series gray level pl0t. It begins somewhat

above and below the p = 2 cusp point and extends to the sphere

surface, where it continues into the far-field to become the

familiar first order rainbow. This behavior is shown more visibly

in the p = 2 carpet plot of Fig. 6. Also surprisingly visible in

Fig. 6 are the first few supernumerary rainbows inside the droplet.

One other feature to note in Fig. 2 is how the interference

structure in the gray level plots corresponds to regions of

intersecting rays in the line plots. For example, the gray level

plot for p = 3 shows much interference structure on the illuminated

side of droplet (from r = -l.0a to r = -0.27a) and a smooth

decrease in intensity on the shadow side (from r = -0.27a to

r _ +l.0a). The corresponding line plot for p = 3 shows many rays

intersecting one another in the region on the illuminated side and

the rays diverging in the region on the shadow side.

In order to assess the quantitative agreement between the

caustics of ray theory and the individual terms of the Debye series

expansion of the interior electric field, the source function was

calculated along the Z axis for the p = 1 to i0 terms of the Debye

series. The results are shown in Fig. 7 as the solid curves. It

is remarkable that for large p, the source function for an

individual term in the Debye series, ranges over as many as sixteen

orders of magnitude. This large variation is easily understood.

From the previous section, the intensity of a p-ray is proportional

to T(0i)RPl(Si). Consider the refractive index of eq. (28) and

p = i0. The intensity at the center of the sphere is due to rays

incident near the sphere axis with 0i = 0, T = 0.977, R = 0.023, and

TR 9 _ I0 15. But the intensity near the surface of the sphere is due

to rays near grazing incidence with 8 i = _/2, and perhaps T = 0.01

and R = 0.99 giving TR 9 = 10 .2, thirteen orders of magnitude larger

than at the center. In other words, rays near grazing incidence

have a low probability of being transmitted into the droplet. But

once inside, the probability of their surviving many internal

reflections is quite large. On the other hand, rays near normal

incidence are very likely to be transmitted into the droplet. But

8



once inside, they are again very likely to be transmitted back out.
Since the cusp points of the p-ray caustics are due to rays near
normal incidence, this argument explains why they are the locations
on the caustics of nearly the weakest intensity, rather than the
strongest. The illusion in the ray theory pictures of Fig. 2 that
the cusp point is the most intense location on the caustic results
from incorrectly drawing all the ray lines with equal darkness or
thickness. Since T(Oi)RP'I(Oi) continues to grow in going from normal

incidence to grazing incidence, the axial caustics become more

intense as they progress from the center of the droplet to the

perimeter.

In the previous section, we argued that on the Z axis, the

electric field should be dominated by the contribution provided by

the axial caustics. Figure 7 shows the density of rays on the

axial caustics (data displayed as points) given by eq. (9)

multiplied by a single scaling factor for all p . The locations on

the curves that are multivalued represent regions where the axial

caustic has turned back on itself. As is seen in this figure, at

x = i00, the ray theory model of caustics within a liquid droplet

is a quantitatively good approximation to the caustic structure

predicted by wave theory. At the turning points of the axial

caustics, the ray theory intensity becomes infinite while the Debye

series intensity undergoes a rapid increase by a number of orders

of magnitude and is accompanied on one side by an interference

structure, a behavior typical of diffraction caustics. 41 For

larger x the interference structure becomes finer and the caustics

become quite well defined.

Comparison with SRS and Fluorescence Emission

The transition rates for stimulated Raman scattering (SRS) and

fluorescence emission at a given location within a sample are

proportional to the square of the stimulating electric field at

that location, i.e. the source function. 42 Exploiting this fact,

these inelastic light scattering processes have been used to probe

the distribution of electric field strength within spherical liquid

droplets illuminated by laser light. 33_'43_ Three regions of

enhanced source function within the droplet have been observed.

The first region is on the droplet's shadow side at r = +0.8a. The

second region is on the droplet's illuminated side at r = -0.8a.

The third region is the entire circumference of the droplet. This

last region of strong emission, in contrast to the first two, is

observed only for certain diameter droplets and corresponds to the

situation where the diameter of the droplet, its refractive index,

and the wavelength of the incident light satisfy the conditions for
4547

the occurrence of a morphological scattering resonance.

The analysis of the previous two sections and Fig. 7 can be

used to explain the first region of enhanced source function on the

droplets shadow side. The regions of most intense focusing on the

shadow side of the droplet axis in Fig. 7 occur at focal point of

the p = 2 rays, and also at the maxima of the Debye series

interference patterns associated with the outermost turning points

of the axial caustics at r = +0.80a for p = 6 and r = +0.78a for

p = i0. Other turning points in this region are the outermost

9



turning points of the p = 5 and 9 axial caustics. But these are
lower than those for the p = 6 and I0 by about two to five orders
of magnitude. As a result we attribute the r = +0.8a source of SRS
and fluorescence emission to the p = 2 focal point amplified by the

near-identical turning points of the p = 6, i0, 14, ... axial

caustics.

In Refs. 33-34, 43 the shadow side source of SRS and

fluorescence emission seems to be on the droplet axis. However in

Ref. 44 it appears instead on the surface of the droplet at the

position of the p = 1 caustic ring . Kerker and his co-workers

have pointed out that the electric and magnetic field boundary

conditions at the surface of the droplet must be satisfied not only

by the radiation at the incident wavelength, but also by the

radiation at the inelastically scattered wavelength. 42,4949 This

causes the inelastically scattered radiation to be preferentially

emitted in certain directions, and that these directions vary for

stimulated molecules at different locations within the droplet.

Since the observations of Ref. 33-34,43 and Ref. 44 were made at

different scattering angles, this directionality of the

inelastically scattered radiation may provide the explanation for

the difference between the observations. This point, however,

requires further study. ................ i_

The sec0nd region of SRS and fluorescence emission on the

illuminated side of the droplet (at r =-0.8a) is said to be caused

by the focusing on the axis of rays that have internally reflected

twice within the droplet 35 (i.e. p = 3 rays). This interpretation

can be seen in Figs. 2, 7 to be incorrect since for n = 1.36, eq.

(5) predicts that the p = 3 cusp point should occur at z = -0.27a.

This corresponds to the very small enhancement on the full Mie plot

in Fig. 5c at z = -0.27a. The locations of the outermost turning

points of the axial caustics at r = -0.80a for p = 4 and at

r = -0.78a for p = 8 closely correspond to the maximum source

function enhancement in Fig. 5c. As a result we attribute the

r = -0.8a source to the nearly identical locations of the turning

points of the p = 4, 8, 12 ... axial caustics.

It has been noted that when observing the sources of SRS and

fluorescence emission within liquid droplets, the curvature of the

droplet surfac_ causes the apparent source of the emission to be

shifted from its actual location. 33,5° This shift in position is

calculated in Appendix C using geometrical optics and is shown in

Fig. 8 for n = 1.333. Also shown in Fig. 8 are the results of an

experimental verification of the position shift. The 18.4 cm

diameter thin-wall glass globe described earlier was fitted with a

scale along its diameter. The globe was photographed from the

side, then filled with water and photographed again. The shifts in

the positions of the grid marks on the scale between the two

photographs were measured. The agreement with the results of

Appendix C is good.

We applied the method of Appendix C to determine the actual
locations of the sources of SRS and fluorescence emission in the

photographic observations of Refs. 33-34, 43. The results are

given in Table i. The experimental results agree with the

locations of the p = 2 cusp point and the outermost turning points

of the p = 4, 6, 8, I0, ... axial caustics found in Fig. 7.

i0



Conclusions

In the past, the Debye series expansion of the far-field Mie
scattering amplitudes has provided a valuable method by which a
scattering mechanism can be computationally isolated from all the
other effects that interfere with it. In this paper we show that
the Debye series expansion of the interior field Mie amplitudes has
a physical interpretation of equal richness. The individual terms
of the Debye series correspond to families of rays inside the
droplet. The caustics of ray theory are reproduced by the Debye
series calculations and decorated with diffraction structure
typical of wave theory treatments. Further, the Debye series
analysis provides the physical explanation of the source function
hot spots observed using inelastic light scattering.

Acknowledgement

This work was carried out while J.A.L. was a NASA/ASEE Summer
Faculty Fellow in the Optical Measurement Systems Branch of the
NASA Lewis Research Center.

ii



References

i. J. R. Reitz, F. J. Milford, and R. W. Christy, FouDdations o__f

Electromaqnetic Theory, third ed___=.(Addison-Wesley, Reading,

Mass., 1979), section 18-2.

2. M. Herzberger, Modern Geometrical oDtics (Wiley-Interscience,

New York, 1958), p. 156. ....

3. T. Pearcy,"The structure of an electromagnetic field in the

neighborhood of a cusp caustic," Phil. Mag. 3_/7, 311-317 (1946).

4. D. G. Burkhard and D. L. Shealy, "Formula for the density of

tangent rays over a caustic surface," Appl. Opt. 2_!1, 3299-3306

(1982).

5. P. W. Dusel, M. Kerker, and D. D. Cooke, "Distribution of

" J. Opt. Soc Am.absorption centers within irradiated spheres,

6_99, 55-59 (i979)i. _ _

6. W. M. Greene, et al., "Photophoresis of irradiated spheres:

absorption centers," J. Opt. Am. B_22, 998-1004 (1985).

7. H. C. van de Hulst, _ Scatterinq bv Small Particles (Dover,

New York, 1981) section 9.22.

8. Ref. I, section 18-5.

9. H. M. Nussenzveig, "High-frequency scattering by a transparent

sphere. I. Direct reflection and transmission," J. Math. Phys.

i___00,82-124 (1969).

i0. H. M. Nussenzveig, "High-frequency scattering by a transparent

sphere. II. Theory of the rainbow and the glory," J. Math.

Phys. I0, 125-176 (1969).

Ii. J. A. Lock, "Cooperative effects among partial waves in Mie

scattering," J. Opt. Soc. Am. A__5, 2032-2044 (1988).

12. V. Khare and H. M. Nussenzveig, "Theory of the rainbow," Phys.

Rev. Lett. 3_/3, 976-980 (1974).

13. V. Khare and H. M. Nussenzveig, "Theory of the glory," Phys.

Rev. Lett. 3__88,1279-1282 (1977).

14. V. Khare and H. M. Nussenzveig, "The theory of the glory," in

Statistical Mechanics and Statistical Methods in Theory and

ADDlication, ed. U. Landman (Plenum, New York, 1977) pp. 723-
764.

15. H. M. Nussenzveig, "Complex angular momentum theory of the

rainbow and the glory," J. Opt. Soc. Am. 69, 1068-1079, 1193-

1194 (1979).

16. H. M. Nussenzveig and W. J. Wiscombe, "Forward optical glory,"

12



Opt. Lett. 5, 455-457 (1980).

17. H. M. Nussenzveig and W. J. Wiscombe, "Efficiency factors in
Mie scattering," Phys. Rev. Lett. 45, 1490-1494 (1980).

18. H. M. Nussenzveig and W. J. Wiscombe, "Diffraction as
tunneling," Phys. Rev. Lett. 59, 1667-1670 (1987).

19. J. A. Lock, "Theory of the observations of high-order rainbows
from a single water droplet," Appl. Opt. 26, 5291-5298 (1987).

20. J. A. Lock and J. R. Woodruff, "Non-Debye enhancements in the
Mie scattering of light from a single water droplet," Appl.
Opt. 28, 523-529 (1989).

21. P. L. Marston, "Critical angle scattering by a bubble:
physical-optics approximation and observations," J. Opt. Soc.
Am. 69, 1205-1211 (1979).

22. P. L. Marston and D. L. Kingsbury, "Scattering by a bubble in
water near the critical angle: interference effects, " J. Opt.
Soc. Am. 71, 192-196 (1981).

23. D. S. Langley and P. L. Marston, "Critical angle scattering of
laser light from bubbles in water: measurements, models, and
application to sizing of bubbles," Appl. Opt. 23, 1044-1054
(1984).

24. W. P. Arnott and P. L. Marston, "Optical glory of small freely

rising gas bubbles in water: observed and computed cross-

polarized backscattering patterns," J. Opt. Soc. Am. A5, 496-

506 (1988).

25. J. V. Dave, "Subroutines for computing the parameters of the

electromagnetic radiation scattered by a sphere" (Report 320-

3237, IBM Scientific Center, Palo Alto, Calif., 1968).

• " Appl.26 W. J. Wiscombe, "Improved Mie scattering algorithms,

Opt. 1-9, 1505-1509 (1980).

27. G. J. Rosasco and H. S. Bennett, "Internal field resonance

structure: Implications for optical absorption and scattering

" J. Opt. Soc Am. 6-8, 1242-1250by microscopic particles,

(1978).

28 A. Bott and W Zdunkowski, Electromagnetic energy within

dielectric spheres," J. Opt. Soc. Am. A__44,1361-1365 (1987).

• • "Survey of the Mie problem29 C. C Dobson and J. W. L. Lewis,

" J. Opt. Soc. Am. A6, 463-466 (1989)source function,

30. S. Chang, "Internal electromagnetic energy within a dielectric

sphere in a plane-polarized TEM_ laser beam," J. Opt. Soc. Am.

B__66,1332-1338 (1989).

13



31. S. C. Hill, et al., "Sizing dielectric spheres and cylinders
by aligning measured and computed resonance locations:
Algorithm for multiple orders," Appl. Opt. 24, 2380-2390
(1985) .

32. V. E. Cachorro and L. L. Salcedo, "New improvements for Mie

scattering calculations," J. Elect. Waves and App. (to appear).

33. D. S. Benincasa, et al., "Spatial distribution of the internal

and near-field intensities of large cylindrical and spherical

scatterers," Appl. Opt. 26, 1348-1356 (1987).

34. R. G. Pinnick, et al., "Aerosol-induced laser breakdown

thresholds: wavelength dependence," Appl. Opt. 2_/7, 987-996

(1988).

35. C. F. Wood, et al., "Time-resolved shadowgraphs of large

individual water and ethanol droplets vaporized by a pulsed CO 2

laser," Appl. Opt. 2_/7, 2279-2286 (1988).

36. A. B. Pluchino, "Surface waves and the radiative properties of

micron-sized particles, " Appl. Opt. 20, 2986-2992 (1981).

37. P. Chylek, J. D. Pendleton, and R. G. Pinnick, "Internal and

near-surface scattered field of a spherical particle at

resonant conditions," Appl. Opt. 2__44,3940-3942 (1985).

38. P. Chylek, et al., "Effect of spherical particles on laser-

" Appl. Opt. 26, 760-762 (1987)induced breakdown in gases,

39. J. P. Barton, D. R. Alexander, and S.A. Schaub, "internal

fields of a spherical particle illuminated by a tightly focused

laser beam: Focal point positioning effects at resonance," J.

Appl. Phys. 65, 2900-2906 (1989).

40. Ref. 5, section 13-24.

41. M. V. Berry and C. Upstill, "Catastrophe optics: Morphologies

of caustics and their diffraction patterns," Prog. in Opt. 18,

257-346 (1980).

42. M. Kerker and S. D. Druger, "Raman and fluorescent scattering

by molecules embedded in Spheres with radi_ up to several

multiplesof the wavelength," Appi. Opt. 18, 1172-1179 (1979).

43. P. Chylek, M. A. Jarzembski, N. Y. Chou, and R. G. Pinnick,

"The effect of size and material of liquid spherical particles

on laser-induced breakdown," Appl. Phys. Lett. 49, 1475-1477

(1986) .

4'4. M. A. Jarzembski and V. Srivastava, Electromagnetic field

enhancement in small liquid droplets using geometric optics,"

Appl. Opt. 2-8, 4962-4965 (1989).

14



45. P. Chylek, "Partial wave resonances and the ripple structure
in the Mie normalized extinction cross section," J. Opt. Soc.
Am. 66, 285-287 (1976).

i

46. A. Ashkin and J. M. Dziedzic, "Observation of resonances in the

radiation pressure on dielectric spheres," Phys. Rev. Lett. 3_88,

1351-1354 (1977).

47. A. Ashkin and J. M. Dziedzic, "Observation of optical

resonances of dielectric spheres by light scattering," Appl.

Opt. 20, 1803-1814 (1981).

48. H. Chew, P. J. McNulty, and M. Kerker, "Model for Raman and

fluorescent scattering by molecules embedded in small

particles," Phys. Rev. __AI3, 396-404 (1976).

49. M. Kerker, et al., "Raman and fluorescent scattering by

molecules embedded in small particles: Numerical results for

incoherent optical processes," J. Opt. Soc. Am. 68, 1676-1686

(1978).

50. S. C. Hill and R. E. Benner, "Morphology-dependent resonances

associated with stimulated processes in microspheres," J. Opt.

Soc. Am. B3, 1509-1514 (1986).

51. C. C. Dobson and J. W. L. Lewis, "Survey of the Mie problem

sQurce function," J. Opt. Soc. Am. A6, 463-466 (1989).

52. W. M. Greene, et al., "Photophoresis of irradiated spheres:

" J. Opt. Am. B5, 866 (1988).absorption centers: errata, D

15



Appendix A

Consider the p-ray which enters the liquid droplet with the
angle of incidence 0i at the coordinates

zi = -a cos(8 i) (AI)

@i = +a sin(Si).

The location where this ray intersects the sphere surface at the

p - 1 internal reflection is

zp_ 1 = -a cos(@/ + 2(p-l)_)
(A2)

@p-1 = +a sin(81 + 2(p-l)_)

and the location Where it intersects the sphere surface at the p

internal reflection is

zp = -a cos(@i + 2p_)

pp = +a sin(8i + 2p¢),

(A3)

where

- _ 8 r (A4)
2

and 8, is the angle of refraction given in eq. (2). The equation

of this p-ray is

P = Pp-1 - [tan(y)] (z-zp_1), (A5)

where 7 is given in eq. (3). Consider the intersection of this ray

with the p-ray whose angle of incidence is @i + 6. The angle of

refraction of this second p-ray is 8, + 6 where

6 = 8 cos(8i) (A6)

n cos(8 r)

for small 6. In the limit as 6 _ 0, the intersection point of the

first and second p-ray is the location on the caustic given by

eq. (i).

For the axial caustic, consider the location where the p-ray

crosses the Z axis. Eq. (A5) with @ = 0 gives

z = zp_ I + @;-i (A7)
tan(y)

Substituting eq. (A2) into (A7) gives eq. (8).
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Appendix B

Let dF_ be the flux incident on the annular ring of width d0 i
centered at the angle of incidence 0i and let dz be the progress

along the p-ray axial caustic that results from increasing the

angle of incidence from 8i - d0i/2 to 0i + d0i/2. Then

dFin c = 2_ a 2 sin(8/) cos (0i) dO i. (BI)

The fraction of this incident flux dFp that survives p-i internal
reflections is

dFp = dFin c T(O i) RP-I(Oi). (B2)

Then following the procedure of Ref. 4,

dF;

dFp _ dO i (S3)
dz dz

dO i

The expression for z is given in eq. (8).

respect to 8i and inserting the result into eq. (B3) gives eq.

Differentiating it with

(9).
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Appendix C

Consider a point on the axis of the sphere at the location

z s = wa (Cl)

as in Fig. 9a. Assume that this point source emits light rays in

all directions. Consider the light ray that leaves the source at

an angle _ with respect to the p axis. Then the z coordinate of

the intersection of this light ray with the surface of the sphere
is

Zou t = U a

where

u = w + [w2+l-2wcos(9)] '_

and

(C2)

COS(9 +ei) (C3)

wsin(_) (C4)
sin(8i)- [w2+l_2wcos(9)], _.

The angle that the exiting ray makes with the Z axis is

: _ + er (c5)

where

sin(8=) : n wsin(_)
[w 2 + 1 - 2wcos(9)] 'h'

(C6)

As is shown in Fig. 9b, many such light rays leave the sourc_ S,

pass through a lens. These rays are then imaged at the point S on

a viewing screen parallel to the Z axis as shown in Fig 9c. These

rays, such as rays A, B, and C in Fig. 9b appear to originate from

the virtual source S' within the droplet. Consider ray B which

passes through the center of the lens. If d is the distance from

the droplet to the lens, then from Fig. 9c the angle that this ray

makes with the Z axis is approximately

_- _+2 arctan(_). (C7)

In the limit d >> a _ z_t , combining eqs. (C5, C7) gives

cos (9) : sin(Sz)

or

(C8)

w 2+l-2wcOs(9) : n2_tan2(9) • (C9)

Finally, given the actual position of the source w, one numerically

solves eq. (C9) to obtain B. This is then inserted into eq. (C4)

to find 8i, and the result is substituted into eq. (C3) to find u.

If a << d, this is also the apparent position of the virtual

source S'.
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Table 1 +

Ref. Liquid Droplet Shadow Side Illuminated Side
Radius Enhancement Enhancement

33 ethanol

n=1.36

34 methanol

n=1.33

43 ethanol _)

n=1.36

35 @m

25 @m

not

given

0.66a _< r s 0.79a

0.67a _< r < 1.00a

0.42a _< r _ 1.00a

-0.78a _ r s -0.70a

-l.00a _< r _< -0.63a

-l.00a s r s -0.26a

+

(a)

The experimentally observed locations of the sources of SRS
and fluorescence emission in liquid droplets.

P. Chylek, private communication.

P

7

Figure 1 A geometrical light ray with an angle of incidence 0 i

entering and internally reflecting within a liquid

droplet of radius a.
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Figure 2a - Gray level plot of the p = 1 term of the Debye Series
interior source function within the droplet for x = i00

and n = 1.36, for unpolarized light.
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Figure 2b - Line Drawing of the geometrical p = 1 ray family within
the droplet for n = 1.36.
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Figure 2c - Gray level plot of the p = 2 term of the Debye Series

interior source function within the droplet for x = I00

and n = 1.36, for unpolarized light.
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Figure 2d - Line Drawing of the geometrical p = 2 ray family within

the droplet for n = 1.36.
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Figure 2e - Gray level plot of the p = 3 term of the Debye Series

interior source function within the droplet for x = I00

and n = 1.36, for unpolarized light.
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Figure 2f - Line Drawing of the geometrical p = 3 ray family within
the droplet for n = 1.36.
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Figure 2g - Gray level plot of the p = 4 term of the Debye Series

interior source function within the droplet for x = i00

and n = 1.36, for unpolarized light.
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Figure 2h - Line Drawing of the geometrical p = 4 ray family within

the droplet for n = 1.36.
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Figure 2i - Gray level plot of the p = 5 term of the Debye Series
interior source function within the droplet for x = I00
and n = 1.36, for unpolarized light.
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Figure 2j - Line Drawing of the geometrical p = 5 ray family within

the droplet for n = 1.36.
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Figure 2k - Gray level plot of the p = 6 term of the Debye Series
interior source function within the droplet for x = I00
and n = 1.36, for unpolarized light.
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Figure 2L - Line Drawing of the geometrical p = 6 ray family within
the droplet for n = 1.36.
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Figure 2m - Gray level plot of the p = 7 term of the Debye Series
interior source function within the droplet for x = i00

and n = 1.36, for unpolarized light.
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Figure 2n - Line Drawing of the geometrical p = 7 ray family within
the droplet for n = 1 36.
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Figure 2o - Gray level plot of the p = 8 term of the Debye Series

interior source function within the droplet for x = i00

and n = 1.36, for unpolarized light.
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Figure 2p - Line Drawing of the geometrical p = 8 ray family within

the droplet for n = 1.36.
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a

b C

surface of

sphere

Incident Light

Figure 3 (a) The p = 1 caustic ring, (b) the p = 2 cusp caustic

of revolution, and (c) the p = 2 axial caustic for an

18.4 cm thin-wall water-filled spherical glass globe.
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Figure 4
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Formation of the p = 5 axial caustic for various incident

ray angles 8 i. Turning points occur at the locations

where the p = 5 cusp caustic intersects itself on the Z

axis. The arrows below the figure show the progression

of the axial caustic for the rays A-H and I-P.
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Figure 5 The interior source function in Mie theory for a sphere

with x = i00, n = 1.36, and for unpolarized incident

light shown (a) as a carpet plot, (b) as a gray-level

plot, and (c) along the Z axis of the droplet.
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Debye Series

p = 2
n= 1.36
x = i00

Supernumerary Rainbows

fPrimary Rainbow
CUSD

Point

-I.00
Normalized di-_tance (r/a)

+l. OO

Figure 6 The p = 2 Debye series contribution to the interior

source function showing the p = 2 cusp point and the
interior portion of the first order rainbow and

supernumerary rainbows.
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the Debye series to the interior

source function on the droplet
axls for p = 2 to I0 (curve) and

the density of geometrical rays
on the axial caustic from

eq. (9) (points).
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(a) A light ray leaving a source at the coordinate z, on

the axis of a spherical droplet. (b) Three such rays

leaving the source S and imaged by a lens. The virtual

source of the rays A, B, and C is S' (c) The imaging of

the spherical droplet by a lens. The image of the

topmost portion of the dr0piet T is _. The _mage of the

lowermost portion of the droplet L is _. The image of

the source S is S.
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